Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper
نویسندگان
چکیده
منابع مشابه
Angle Principal Component Analysis
Recently, many l1-norm based PCA methods have been developed for dimensionality reduction, but they do not explicitly consider the reconstruction error. Moreover, they do not take into account the relationship between reconstruction error and variance of projected data. This reduces the robustness of algorithms. To handle this problem, a novel formulation for PCA, namely angle PCA, is proposed....
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملPrincipal Component Analysis for Hyperspectral Image Classification
The availability of hyperspectral images expands the capability of using image classification to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work studies the use of the principal component analysis as a preprocessing technique for the classification of hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the...
متن کاملAdaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection.
Band selection is a commonly used approach for dimensionality reduction in hyperspectral imagery. Affinity propagation (AP), a new clustering algorithm, is addressed in many fields, and it can be used for hyperspectral band selection. However, this algorithm cannot get a fixed number of exemplars during the message-passing procedure, which limits its uses to a great extent. This paper proposes ...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 2020
ISSN: 1083-3668
DOI: 10.1117/1.jbo.25.6.066005